Dilation: Difference between revisions
Eric Lengyel (talk | contribs) (Created page with "__NOTOC__ A ''dilation'' is a conformal transformation of Euclidean space performed by the operator :$$\mathbf D = \dfrac{1 - \sigma}{2} (c_x \mathbf e_{235} + c_y \mathbf e_{315} + c_z \mathbf e_{125} - \mathbf e_{321}) + \dfrac{1 + \sigma}{2} {\large\unicode{x1d7d9}}$$ . This operator scales an object $$\mathbf x$$ by the factor $$\sigma$$ about the center point $$\mathbf c = (c_x, c_y, c_z)$$ when used with the sandwich antiproduct $$\mathbf D \mathbin{\unicode{x27C...") |
Eric Lengyel (talk | contribs) No edit summary |
||
Line 2: | Line 2: | ||
A ''dilation'' is a conformal transformation of Euclidean space performed by the operator | A ''dilation'' is a conformal transformation of Euclidean space performed by the operator | ||
:$$\mathbf D = \dfrac{1 - \sigma}{2} ( | :$$\mathbf D = \dfrac{1 - \sigma}{2} (m_x \mathbf e_{235} + m_y \mathbf e_{315} + m_z \mathbf e_{125} - \mathbf e_{321}) + \dfrac{1 + \sigma}{2} {\large\unicode{x1d7d9}}$$ . | ||
This operator scales an object $$\mathbf | This operator scales an object $$\mathbf u$$ by the factor $$\sigma$$ about the center point $$\mathbf m = (m_x, m_y, m_z)$$ when used with the sandwich antiproduct $$\mathbf D \mathbin{\unicode{x27C7}} \mathbf u \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{D}}}$$. This dilation operator is scaled so that the round weight of $$\mathbf u$$ remains the same after the dilation is applied. | ||
== Exponential Form == | == Exponential Form == | ||
Line 29: | Line 29: | ||
:$$\begin{bmatrix} | :$$\begin{bmatrix} | ||
\sigma & 0 & 0 & | \sigma & 0 & 0 & m_x (1 - \sigma) & 0 \\ | ||
0 & \sigma & 0 & | 0 & \sigma & 0 & m_y (1 - \sigma) & 0 \\ | ||
0 & 0 & \sigma & | 0 & 0 & \sigma & m_z (1 - \sigma) & 0 \\ | ||
0 & 0 & 0 & 1 & 0 \\ | 0 & 0 & 0 & 1 & 0 \\ | ||
m_x \sigma (1 - \sigma) & m_y \sigma (1 - \sigma) & m_z \sigma (1 - \sigma) & \dfrac{\mathbf m^2 (1 - \sigma)^2}{2} & \sigma^2 | |||
\end{bmatrix}$$ . | \end{bmatrix}$$ . | ||
Latest revision as of 09:04, 22 December 2024
A dilation is a conformal transformation of Euclidean space performed by the operator
- $$\mathbf D = \dfrac{1 - \sigma}{2} (m_x \mathbf e_{235} + m_y \mathbf e_{315} + m_z \mathbf e_{125} - \mathbf e_{321}) + \dfrac{1 + \sigma}{2} {\large\unicode{x1d7d9}}$$ .
This operator scales an object $$\mathbf u$$ by the factor $$\sigma$$ about the center point $$\mathbf m = (m_x, m_y, m_z)$$ when used with the sandwich antiproduct $$\mathbf D \mathbin{\unicode{x27C7}} \mathbf u \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{D}}}$$. This dilation operator is scaled so that the round weight of $$\mathbf u$$ remains the same after the dilation is applied.
Exponential Form
A dilation by a scale factor $$\sigma$$ about the center of a unitized, positively oriented sphere $$\mathbf s$$ can be expressed as an exponential of the sphere's attitude as
- $$\mathbf D = \exp_\unicode{x27C7}\left(-\dfrac{1}{2} \delta \operatorname{att}(\mathbf s)\right) = -\operatorname{att}(\mathbf s) \sinh \dfrac{\delta}{2} + {\large\unicode{x1d7d9}} \cosh \dfrac{\delta}{2}$$ ,
where $$\delta = \log \sigma$$. Expanding the $$\sinh$$ and $$\cosh$$ functions, we can rewrite this as
- $$\mathbf D = \dfrac{e^{-\delta/2} - e^{\delta/2}}{2} \operatorname{att}(\mathbf s) + \dfrac{e^{\delta/2} + e^{-\delta/2}}{2} {\large\unicode{x1d7d9}}$$ .
Homogeneous multiplication by $$e^{\delta/2}$$ gives us
- $$\mathbf D = \dfrac{1 - e^\delta}{2} \operatorname{att}(\mathbf s) + \dfrac{e^\delta + 1}{2} {\large\unicode{x1d7d9}}$$ ,
and replacing $$e^\delta$$ with $$\sigma$$ produces
- $$\mathbf D = \dfrac{1 - \sigma}{2} \operatorname{att}(\mathbf s) + \dfrac{1 + \sigma}{2} {\large\unicode{x1d7d9}}$$ .
Matrix Form
When a dilation $$\mathbf D$$ is applied to a round point, it is equivalent to premultiplying the point by the $$5 \times 5$$ matrix
- $$\begin{bmatrix} \sigma & 0 & 0 & m_x (1 - \sigma) & 0 \\ 0 & \sigma & 0 & m_y (1 - \sigma) & 0 \\ 0 & 0 & \sigma & m_z (1 - \sigma) & 0 \\ 0 & 0 & 0 & 1 & 0 \\ m_x \sigma (1 - \sigma) & m_y \sigma (1 - \sigma) & m_z \sigma (1 - \sigma) & \dfrac{\mathbf m^2 (1 - \sigma)^2}{2} & \sigma^2 \end{bmatrix}$$ .